lunes, 13 de junio de 2011

HISTORIA DEL COMPUTADOR

El hombre aprendió a contar con los dedos. Es la forma más fácil, la más asequible y la primera que se le ocurre hasta a los niños de hoy en día. Al tener diez dedos entre las dos manos, la base 10 se convirtió en la base numérica más usada. Para representar números mayores que diez se usaron diversos métodos, desde un auxiliar que contara con otros diez dedos hasta extenderse a las falanges, los dedos de los pies, los brazos u otras partes del cuerpo. Algunos pueblos (sobre todo entre los mesopotámicos) utilizaron otros sistemas de numeración, principalmente en base 60 (sexagesimales). Pero la base 10 y el sistema posicional triunfaron como expresión numérica, especialmente después de la introducción de la numeración arábiga.
El sistema de numeración parece que fue inventado por los hindúes en los siglos I o II d.C. Los árabes lo tomaron de ellos y lo transmitieron a la península ibérica; desde allí fue pasando al resto de Europa, donde el primero que usó la numeración arábiga fue el monje Geribert D’Aurillac, posteriormente Papa Silvestre II (h. 938-1003), siendo generalizado por el matemático italiano Leonardo Fibonacci (h. 1175-1240) en su celebérrimo Liber abaci (ca. 1202), en el que muestra los conocimientos aprendidos de los árabes durante sus viajes. La numeración arábiga es, sin duda, mucho más flexible para el cálculo que la numeración romana, e introduce en el cálculo el concepto de valor posicional del número, decisivo a la hora de enfrentarse con grandes cantidades.
En la historia de la humanidad se han construido distintos tipos de instrumentos de ayuda para que el hombre pudiera calcular, hasta llegar al computador digital moderno. Aquí mostraremos algunos hitos importantes en esta historia. Se muestra la evolución de las computadoras, así como de los dispositivos para la entrada/salida y los medios de comunicación de datos.

LAS MÁQUINAS CALCULADORAS (500 a.C. - 1822 d.C.)

La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo. Esta sección comienza desde la aparición del ábaco en China y Egipto, hasta la invención del Motor Diferencial de Charles Babbage, en 1822. El descubrimiento de los sistemas, por Charles Napier, condujo a los avances en las calculadoras. Al convertir la multiplicación y división en sumas y restas, una cantidad de máquinas (incluyendo la regla deslizante) puede realizar estas operaciones. Babbage sobrepasó los límites de la ingeniería cuando inventó su motor, basado en este principio. En esta etapa se inventaron:

EL ÁBACO

Quizá fue el primer dispositivo mecánico de contabilidad que existió, Se piensa que se originó entre 600 y 500 a.C., en China o Egipto, y su historia se remonta a las antiguas civilizaciones griega y romana.
Dos principios han coexistido respecto a este tema. Uno es usar cosas para contar, ya sea los dedos, piedras, conchas, semillas. El otro es colocar esos objetos en posiciones determinadas. Estos principios se reunieron en el ábaco, instrumento que sirve hasta el día de hoy, para realizar complejos cálculos aritméticos con enorme rapidez y precisión. Los primeros ábacos no eran más que hendiduras en la arena (de ahí su nombre, del griego abax: arena) que se rellenaban de guijarros, hasta diez en cada hendidura. La primera correspondía a las unidades, la segunda a las decenas, la tercera a las centenas, y así sucesivamente. Para representar un orden mayor se retiraban los guijarros de la fila precedente y se ponía uno nuevo en la posterior. Posteriormente se utilizó un tablero lleno de arena, y luego, entre griegos y romanos, una plancha de cobre con hendiduras para colocar los guijarros. Los aztecas usaban varillas paralelas de madera insertadas en un vástago horizontal. El ábaco ruso era (y es) un marco de madera con varillas paralelas y cuentas insertadas en las varillas. El ábaco chino (suanpan) actual es muy similar al ruso, pero está dividido en dos zonas (inferior y superior) por un listón: por encima del listón, cada cuenta tiene valor 5; por debajo, valor 1. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre las varillas, sus posiciones representan los valores almacenados, y es mediante dichas posiciones que éste representa y almacena los datos. El uso generalizado del ábaco retardó la difusión del sistema de numeración decimal o arábigo, ya que incorporaba de hecho el concepto de valor posicional de la cifra, sirviendo cualquier otro sistema de numeración no demasiado complicado para anotar el resultado final, eliminando la pesadez del cálculo con las cifras romanas. Su efectividad ha soportado la prueba del tiempo y como una indicación de su potencial, todavía hoy en día se usa el ábaco en muchas culturas orientales. A este dispositivo no se le puede llamar computador, por carecer del elemento fundamental llamado programa.

LAS TABLAS DE MULTIPLICAR DE NAPIER

A principios del siglo XVI el nuevo sistema de numeración decimal desplazó al sistema romano para efectuar cálculos complicados. Pero la novedad incluía un aprendizaje, y operaciones tan simples como dividir requerían de un profesional de las matemáticas.
John Napier (1550-1617), matemático escocés, realizó dos grandes contribuciones al cálculo: el descubrimiento de los logaritmos y la construcción de las primeras tablas de multiplicar. Ambos descubrimientos facilitaron notablemente las operaciones con los números arábigos.
Los "Napier Bones"
Las tablas de multiplicar de Napier fueron publicadas justo antes de morir, en 1617. Era un juego de palitos para calcular, a las que llamó "Napier Bones." Así llamados porque estaban tallados con ramitas de hueso o marfil, los "huesos" incorporaron el sistema logarítmico. Eran tablillas rectangulares que contenían la tabla de multiplicar de un número, del uno al diez, divididas en nueve zonas; en la superior aparecía el número, mientras que las ocho restantes contenían sus sucesivos múltiplos, hasta el noveno. Las zonas de los múltiplos tenían separadas las cifras por una línea oblicua. Para multiplicar no hacía falta más que colocar alineadas las tablillas correspondientes a las cifras del número que se quería multiplicar y sumar adecuadamente las cifras coincidentes. Este procedimiento se extiende para multiplicar números de tantas cifras como se quiera, siempre que se disponga del suficiente número de tablillas.
Éste es un primer intento de facilitar las operaciones de cálculo con métodos mecánicos, aunque el fundamento del mecanismo sea la mano del hombre, y el procesamiento de la información, su cerebro.
Mucho más decisivo que las tablas de multiplicar fue la introducción de los logaritmos. El trabajo con los logaritmos permitió reducir de forma muy simple las multiplicaciones y divisiones a sumas y restas, respectivamente.

LA REGLA DESLIZANTE DE CÁLCULO

Basadas en los logaritmos, se construyeron las primeras reglas de cálculo, primeras máquinas analógicas de cálculo. Todas derivan de dos prototipos construidos por Edmund Gunter (1581-1626), matemático y astrónomo inglés, y William Ougthred (1574-1660). La regla deslizante era un juego de discos rotatorios que se calibraban con los logaritmos de Napier. Es uno de los primeros aparatos de la informática analógica.
La regla de cálculo no deja de ser un auxiliar de la memoria, pues necesita del concurso del operador para efectuar las operaciones, recordar los resultados intermedios y realizar con las partes móviles de la regla todos los pasos del cálculo, pero es un utilísimo instrumento, que en distintas versiones y sobre diversos materiales ha estado vigente en los procesos de cálculo hasta comienzos de 1970, cuando las calculadoras portátiles digitales comenzaron a ser más populares por su bajo costo.

LA CALCULADORA MECÁNICA

En 1623 fue diseñada por Wilhelm Schickard, en Alemania, la primera calculadora mecánica. Llamado "El Reloj Calculador", la máquina incorporaba los logaritmos de Napier, y hacía rodar cilindros en un gran albergue. Se comisionó un Reloj Calculador para Johannes Kepler, el famoso matemático, pero fue destruido por el fuego antes que se terminara.
El Reloj Calculador, la primera calculadora mecánica

LA PASCALINA

El inventor y pintor Leonardo Da Vinci (1452-1519) trazó las ideas para una sumadora mecánica.
Ideas iniciales de Leonardo da Vinci para una sumadora mecánica
Siglo y medio después, en 1642, el filósofo y matemático francés Blaise Pascal (1623-1662) por fin inventó y construyó la primera sumadora mecánica.
Blaise Pascal (1623-1662)
Se le llamó Pascalina, y funcionaba como una maquinaria compuesta por varias series de ruedas dentadas accionadas por una manivela. La primera rueda correspondía a las unidades, la segunda a las decenas, etc., y cada vuelta completa de una de las ruedas hacía avanzar 1/10 de vuelta a la siguiente. La máquina funcionaba por el principio de adición sucesiva; mediante otro procedimiento, incluso restaba. Se introduce así el concepto de saldo o resultado acumulativo, que se sigue usando hasta nuestros días: la máquina proporciona de manera automática (con el giro de la manivela) el resultado, dispuesto para leerse y sin participar ningún operador en el proceso de toma de decisión (compárese con la regla de cálculo, donde el operador ha de decidir dónde coloca la pieza móvil de la regla). La máquina de Pascal efectúa el cálculo de forma mecánica, ofreciendo el resultado final.
......................
......Máquina Pascalina de frente .....................................................La máquina Pascalina por detrás
Originalmente se desarrolló la máquina para simplificarle el trabajo al padre de Pascal, intendente de finanzas en Rouen, en la recolección del impuesto. A pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina resultó ser un desconsolador fallo financiero, pues para esos momentos resultaba más costosa que la labor humana para realizar los cálculos aritméticos.

LA MÁQUINA CALCULADORA

Inspirados en este diseño, un siglo más tarde otros científicos trataron de emular a Pascal y construyeron máquinas que, como la del científico alemán Mattieu Hahn, en el año 1779, podían realizar las cuatro operaciones aritméticas fundamentales.
Gottfried Wilhelm von Leibniz (1646-1716) Primera máquina calculadora
Pero fue el matemático alemán Gottfried von Leibniz en 1673 quien pensó ir más allá y se propuso por primera vez construir una máquina que sirviera de enlace entre un problema y su resolución. Así, el científico alemán diseñó un artefacto que permitía, además de sumar y restar, la realización de las operaciones de multiplicar y dividir mediante la sucesión de adiciones y sustracciones, respectivamente. Había nacido la primera máquina calculadora propiamente dicha. La máquina, igualmente basada en supuestos mecánicos, utilizaba cilindros dentados con diferentes longitudes en sus dientes, en los que se ajustaban otros engranajes de tamaño más reducido que representaban cada una la cifra del multiplicando. Cada vuelta completa del conjunto de los engranajes largos aumentaba en una cifra el número indicado por los engranajes cortos o multiplicando, de forma que la multiplicación no se hacía por sumas sucesivas, sino en un solo movimiento de manivela. El número de vueltas efectuadas por los engranajes largos determinaba por su parte la cifra asociada con el multiplicador.
Un nuevo paso fue dado en 1709 por Giovanni Poleni y su máquina aritmética, en la que los cálculos mecánicos se realizan en virtud del movimiento de caída de un peso, limitándose el operador a introducir los datos y anotar el resultado. El principio de funcionamiento fue esencial para el desarrollo de las calculadoras: se programa el cálculo y la máquina hace el resto. Y es lo que hacemos aún hoy.
Máquina Aritmética de Poleni

EL JUGADOR DE AJEDREZ AUTOMÁTICO

En 1769, el Jugador de Ajedrez Autómata fue inventado por el Barón Empellen, un noble húngaro. El aparato y sus secretos se le dieron a Johann Nepomuk Maelzel, un inventor de instrumentos musicales, quien recorrió Europa y los Estados Unidos con el aparato, a fines de 1700 y principios de 1800.
El Autómata incluía un jugador de ajedrez "robótico". El Automatón era una sensación dondequiera que iba, y muchos comentaristas, incluso el famoso Edgar Allen Poe, había escrito críticas detalladas diciendo que esa era una "máquina pura." En cambio, siempre se creyó que el aparato fue operado por un humano oculto en el armario debajo del tablero de ajedrez. El Autómata fue destruido en un incendio en 1856.

LA MÁQUINA LÓGICA

La primera máquina lógica fue inventada en 1777 por Charles Mahon, el Conde de Stanhope. El "demostrador lógico" era un aparato tamaño bolsillo que resolvía silogismos tradicionales y preguntas elementales de probabilidad. Mahon es el precursor de los componentes lógicos en las computadoras modernas.

LA PRIMERA TARJETA PERFORADA




La industria textil va a proporcionar el primer ejemplo de suministro de datos variables para el funcionamiento automático de una máquina. La complejidad de los dibujos de las telas, junto con la gran cantidad de husos necesarios para realizarlos, hará que se piense en un método de mecanizar el rutinario trabajo de intercambio de distintas tramas y urdimbres.
El primer sistema es debido a Basilio Bouchon, quien en 1722 ideó un sistema para seleccionar de forma automática los hilos a desplazar en el paso del huso para obtener el dibujo deseado. Dispuso las agujas del telar de forma que encontraran en un extremo una cinta de papel perforada. Dependiendo de si las agujas encontraban o no un agujero en la cinta, los hilos pasaban por encima o por debajo, formando el dibujo de la tela. El cilindro resbalaba, necesitaba constantemente un operario para moverlo, era proclive a los desgarros por acción de las agujas, pero proporcionaba automáticamente el dibujo para los tejidos. Su compatriota Falcón perfeccionó el método en 1728, sustituyendo el cilindro por un eje de sección cuadrada, y la cinta continua de papel perforado por láminas de cartón unidas entre sí, lo que facilitaba el arrastre y el posicionamiento de los agujeros frente a las agujas. Posteriormente, Jacques de Vaucanson consiguió, en 1745, que el movimiento del cilindro (ya cuadrado) fuera el que movía las agujas, eliminando la necesidad del operario para hacer avanzar el cilindro.
Cinta Perforada de Jacquard
Pero fue Jean Marie Jacquard (1753-1834) el primero que reparó en que el sistema de cinta perforada era un sistema de introducción de datos para una máquina. En 1805 perfeccionó un telar de Vaucanson, de manera que fuese el mismo telar, mediante la lectura de la información contenida en la cinta perforada, el que decidiese qué agujas se levantaban y cuáles no. Los hilos estaban conectados a unas palancas y éstas a unos vástagos, que mediante muelles se ponían en contacto con la cinta perforada. El operario, mediante un pedal, accionaba un listón (la grifa) que tiraba de las palancas, según estuvieran levantadas o no, lo que era decidido por la introducción de los vástagos en los agujeros de la cinta de papel, realizándose el dibujo de la tela. Variando la cinta se conseguían unos u otros dibujos. La idea de Jacquard, que revolucionó el hilar de seda, formó la base de muchos aparatos de informática y de los lenguajes de programación.

CALCULADORAS DE PRODUCCIÓN MASIVA

La primera calculadora de producción masiva fue distribuida, en 1820, por Charles Thomas de Colmar. Originalmente se les vendió a las casas de seguro parisienses. El "aritmómetro" de Colmar operaba usando una variación de la rueda de Leibniz. Más de mil aritmómetros se vendieron y eventualmente recibió una medalla en la Exhibición Internacional en Londres en 1862.
Aritmómetro de Colmar

LA MÁQUINA ANALÍTICA DE BABBAGE




Charles Babbage (1793-1871), visionario inglés y profesor matemático de la Universidad de Cambridge, hubiera podido acelerar el desarrollo de las computadoras si él y su mente inventiva hubieran nacido 100 años después.
Charles Babbage, Padre la las computadoras modernas
La idea que tuvo Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. Adelantó la situación del hardware computacional al inventar la "máquina de diferencias", capaz de calcular tablas matemáticas. En 1822 construyó su máquina diferencial, un nuevo modelo de sumadora que permitía, utilizando el método de las diferencias, resolver polinomios de segundo grado. Era la primera máquina proyectada para hacer algo más que sumar y restar, aunque era eso lo que realmente hacía. Proporcionaba la solución a un problema matemático; y trabajando por aproximaciones representaba una manera de resolver distintos problemas.
Pero era un problema, y sólo uno, lo que la máquina diferencial de Babbage podía resolver. El siguiente paso era una máquina de propósito general, que permitiera introducir como datos tanto el problema como los datos del mismo propiamente dichos.
En 1834, cuando trabajaba en los avances de la máquina de diferencias, Babbage concibió la idea y diseñó sobre el papel una "máquina analítica", que resolvería problemas de todo tipo, pues contemplaba la posibilidad de introducir el programa (y el problema a tratar con él) al mismo tiempo que los datos, realizándose las operaciones en el centro de proceso (llamado molino). En esencia, ésta era una computadora de propósitos generales. Conforme con su diseño, la máquina analítica de Babbage podía sumar, restar, multiplicar y dividir en secuencia automática a una velocidad de 60 sumas por minuto. El diseño requería miles de engranajes y mecanismos que cubrirían el área de un campo de fútbol y necesitaría ser accionado por una locomotora. En palabras del mismo científico era una máquina que se “mordía la cola”.
Esta máquina, que fue diseñada mediante una generalización de la máquina de diferencias, tenía cuatro componentes básicos:
Un "almacenamiento" (memoria) con capacidad para guardar 50.000 dígitos decimales. Esta se usaba para guardar estados intermedios, variables y resultados.
Una "unidad de cómputo" puede recibir órdenes para hacer las cuatro operaciones básicas, y puede almacenar resultados en la memoria.
Una unidad de entrada (con tarjetas perforadas), la cual almacenaba el conjunto de órdenes que se deseaba ejecutar.
Una unidad de salida: tarjetas perforadas y salida impresa.
Perforando distintos conjuntos de instrucciones en las tarjetas de entrada, era posible que la máquina realizara distintas operaciones.
Los escépticos le pusieron el sobrenombre de "la locura de Babbage". Charles Babbage trabajó en su máquina analítica hasta su muerte. Los trazos detallados de Babbage describían las características incorporadas ahora en el computador electrónico moderno. Si Babbage hubiera vivido en la era de la tecnología electrónica hubiera adelantado el nacimiento del computador electrónico en varías décadas.
Irónicamente, su obra se olvidó a tal grado que algunos pioneros en el desarrollo del computador electrónico ignoraron por completo sus conceptos sobre memoria, impresoras, tarjetas perforadas y control de programa secuencial. Por su discernimiento, a Babbage hoy se le conoce como el "Padre de las Computadoras Modernas".
La cinta de papel perforado constituye la primera forma de introducción de datos en una máquina para que ejecute una acción mecánica. Viene a equivaler a las ruedas de la máquina de Babbage, donde el telar decide qué variables utilizar en función de los agujeros de la cinta para realizar una acción que no por repetitiva (tejer) resulta menos variada (varía el dibujo; la máquina de Babbage sólo resolvía polinomios de segundo grado, pero el polinomio a resolver variaba según la voluntad del operario; el telar de Jacquard sólo teje, pero el dibujo del tejido depende de la información suministrada por la cinta perforada).
De la unión de los dos (la cinta perforada y la máquina de calcular) surgirían las primeras máquinas que procesan datos.
Charles Babbage quiso aplicar el concepto de las tarjetas perforadas del telar de Jackard en su motor analítico. En 1843 Lady Ada Augusta Lovelace, hija de Lord Byron, sugirió la idea de que las tarjetas perforadas pudieran adaptarse de manera que propiciaran que el motor de Babbage repitiera ciertas operaciones. Debido a esta sugerencia algunas personas consideran a Lady Lovelace la primera programadora de la historia.
La tarjeta Perforada Lady Ada Lovelace
El proyecto de Babbage nunca pudo ser concluido debido a problemas con el hardware, que no pudieron ser solucionados hasta casi un siglo más tarde. Durante este tiempo, hubo diversos avances que permitieron el posterior desarrollo de la computación digital.
En 1991, un equipo del Museo de las Ciencias de Londres consiguió construir una máquina diferencial Nº 2 totalmente funcional, siguiendo los dibujos y especificaciones de Babbage.

No hay comentarios:

Publicar un comentario